Math 100 - SOLUTIONS TO WORKSHEET 4 CONTINUITY: THE IVT; THE DERIVATIVE

1. Continuity

(1) Find c, d, e as appropriate such that each function is continuous on its domain:

Solution: The first function is already continuous on $[0,1)$ and $(1, \infty)$. We have $\lim _{x \rightarrow 1^{-}} f(x)=$ $\lim _{x \rightarrow 1} \sqrt{x}=1$ so we must have $c=1$. We also need $1=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(d-x^{2}\right)=d-1$ so we need $d=2$. The second function is already continuous on $(-\infty, 1)$ and $(1, \infty)$. We have $\lim _{x \rightarrow 1^{-}} f(x)=2 \cdot 1^{3}-e=2-e$ and $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} e \cdot 1^{2}+3=3+e=f(1)$ so the function will be continuous at $x=1$ iff $2-e=3+e$ that is if $e=\frac{5}{2}$.
(2) Where are the following functions continuous?

Solution: $(-\sqrt{7}, \sqrt{7}),(-\infty,+\infty),(-\infty,-1) \cup(-1, \infty)$ respectively.
(3) (Final 2011) Suppose f, g are continuous such that $g(3)=2$ and $\lim _{x \rightarrow 3}(x f(x)+g(x))=1$. Find $f(3)$.

Solution: Since f, g are continuous and applying the limit laws we have

$$
\begin{aligned}
1=\lim _{x \rightarrow 3}(x f(x)+g(x)) & =\left(\lim _{x \rightarrow 3} x\right)\left(\lim _{x \rightarrow 3} f(x)\right)+\left(\lim _{x \rightarrow 3} g(x)\right) \\
& =3 f(3)+g(3)=3 f(3)+6
\end{aligned}
$$

Solving for $f(3)$ we get

$$
f(3)=-\frac{5}{3}
$$

2. The Intermediate Value Theorem

Theorem. Let $f(x)$ be continuous for $a \leq x \leq b$. Then $f(x)$ takes every value between $f(a), f(b)$.
(1) Show that:
(a) $f(x)=2 x^{3}-5 x+1$ has a zero in $0 \leq x \leq 1$.

Solution: $\quad f$ is continuous on $[0,1]$ (given by formula there). We have $f(0)=1, f(1)=-2$. By the intermediate value theorem there is $x_{0} \in(0,1)$ such that $f\left(x_{0}\right)=0 \in(-2,1)$.
(b) $\sin x=x+1$ has a solution.

Solution: Let $f(x)=x+1-\sin x$, so we want x such that $f(x)=0$. The function f is continuous. Note that $f(100)=101-\sin 100 \geq 100$ while $f(-100)=-100+1-\sin x \leq-98$. By the IVT there is $x_{0} \in(-100,100)$ where $f\left(x_{0}\right)=0$, that is $x_{0}+1-\sin x_{0}=0$ so $x_{0}+1=$ $\sin x_{0}$.
(2) (Final 2011) Let $y=f(x)$ be continuous with domain $[0,1]$ and range in $[3,5]$. Show the line $y=2 x+3$ intersects the graph of $y=f(x)$ at least once.

Solution: Consider the diffference $g(x)=f(x)-(2 x+3)$. By arithmetic of limits this is a continuous of function. We have $g(0)=f(0)-3 \geq 3-3=0$ (since $f(0) \geq 3$). We have $g(1)=f(1)-5 \leq 5-5=0$. By the IVT $g(x)$ takes every value between $g(0)$ and $g(1)$, so there is x_{0} such that $g\left(x_{0}\right)=0$ and then $f\left(x_{0}\right)-\left(2 x_{0}+3\right)=0$ so $f\left(x_{0}\right)=2 x_{0}+3$ so the graphs intersect at the point $\left(x_{0}, 2 x_{0}+3\right)$.
(3) (Final 2015) Show that the equation $2 x^{2}-3+\sin x+\cos x=0$ has at least two solutions.

Solution: We have $f(0)=0-3+0+1=-2$. On the other hand if x has large magnitude then $f(x)$ is positive:

$$
\begin{aligned}
f(10) & =200-3+\sin 10+\cos 10 \geq 200-5=195 \\
f(-10) & =200-3-\sin 10+\cos 10 \geq 200-5=195
\end{aligned}
$$

Thus $f(-10), f(10)$ are positive, $f(0)$ is negative. Since f is continuous everywhere (given by formula), the IVT shows that its graph crosses the x axis once in $(-10,0)$ and once in $(0,10)$.
3. Definition of the derivative

Definition. $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
(1) Find $f^{\prime}(a)$ if
(a) $f(x)=x^{2}, a=3$.

Solution: $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-(3)^{2}}{h}=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h}=\lim _{h \rightarrow 0}(6+h)=6$.
(b) $f(x)=\frac{1}{x}$, any a.

Solution: $\quad \lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{a-(a+h)}{a(a+h)}\right)=\lim _{h \rightarrow 0} \frac{-h}{h \cdot a(a+h)}=-\lim _{h \rightarrow 0} \frac{1}{a(a+h)}=$ $-\frac{1}{a^{2}}$.
(c) $f(x)=x^{3}-2 x$, any a. (you may use $\left.(a+h)^{3}=a^{3}+3 a^{2} h+3 a h^{2}+h^{3}\right)$.

Solution: We have

$$
\begin{aligned}
\frac{(a+h)^{3}-2(a+h)-a^{3}+2 a}{h} & =\frac{a^{3}+3 a^{2} h+3 a h^{2}+h^{3}-2 a-2 h-a^{3}+2 a}{h} \\
& =\frac{3 a^{2} h+3 a h^{2}+h^{3}-2 h}{h} \\
& =3 a^{2}-2+3 a h+h^{2} \xrightarrow[h \rightarrow 0]{ } 3 a^{2}-2 .
\end{aligned}
$$

(2) Express the limit as a derivative: $\lim _{h \rightarrow 0} \frac{\cos (5+h)-\cos 5}{h}$.

Solution: This is the derivative of $f(x)=\cos x$ at the point $a=5$.

