1. Let $A \in \mathbf{R}^{m \times n}$ have rank 1. Show that there exist non-zero vectors $x \in \mathbf{R}^{m}$ and $y \in \mathbf{R}^{n}$ so that $A=x y^{T}$. (Hint: Try a simple case and also compute $x y^{T}$ for some simple choices for x and y.) (Comment: You could explore how to generalize such a result to higher rank.)
2. Determine bases for the following subspaces of \mathbf{R}^{3}.
a) the line $x=5 t, y=-2 t, z=t$.
b) all vectors of the form $(a, b, c)^{T}$ such that $a-3 b=2 c$.
3. Let

$$
A=\left[\begin{array}{llllll}
0 & 1 & 1 & 2 & -3 & 1 \\
0 & 2 & 0 & 6 & -6 & 0 \\
0 & 3 & 7 & 2 & -9 & 7 \\
0 & 2 & 2 & 4 & -4 & 3
\end{array}\right]
$$

Determine a basis for the column space of A (chosen from columns of A) and determine a basis for the row space of A. Also give a basis for the nullspace of A, namely $\left\{\mathbf{x} \in \mathbf{R}^{6}: A \mathbf{x}=\mathbf{0}\right\}$.
4. Show that the set of all vectors $\left(b_{1}, b_{2}, b_{3}, b_{4}\right)^{T}$ such that the system below is consistent (i.e. can be solved)

$$
\left[\begin{array}{lll}
2 & 3 & 1 \\
4 & 3 & 3 \\
1 & 3 & 0 \\
2 & 0 & 2
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
$$

is a subspace of \mathbf{R}^{4}. Then find a basis of the subspace.
5. Let A be an $n \times n$ matrix with various eigenvalues including λ and μ with $\lambda \neq \mu$. Let L, M be the eigenspaces associated with eigenvalues λ, μ respectively. (That is, L is the set of all eigenvectors with eigenvalue $\lambda ; M$ is the set of all eigenvectors with eigenvalue μ.) Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ be a basis for L and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{q}\right\}$ be a basis for M. Show that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{q}\right\}$ is a linearly independent set of $p+q$ vectors. (Hint: try $p=1$ and $q=1$ to start). (Comment: You could explore the case if there were three different eigenvalues and three bases for the eigenspaces).
6. Let $\mathbf{R}^{n \times n}$ denote the vector space of all $n \times n$ matrices (over \mathbf{R}). Consider following transformation $f: \mathbf{R}^{n \times n} \rightarrow \mathbf{R}^{n \times n}$

$$
f(A)=A^{T}
$$

Show that this is a linear transformation.
We say that a matrix A is symmetric if $A^{T}=A$ and we say that a matrix A is skew-symmetric if $A^{T}=-A$.
a) Warmup question: Give a basis for $\mathbf{R}^{n \times n}$. How many elements are in your basis?
b) What is the dimension of the eigenspace of eigenvalue 1 for f ? Explain.
c) What is the dimension of the eigenspace of eigenvalue -1 for f ? Explain.
d) Now use the previous question (and other facts) to show that any $A \in \mathbf{R}^{n \times n}$ is a linear combination of a symmetric matrix and a skew-symmetric matrix (you could show this directly of course but I'm asking you to use linear independence/dimension arguments).

